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Towards Al as Colleagues: Multi-Agent System Improves Structured

Professional Ideation
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Fig. 1. MultiColleagues: An lllustrative User Scenario of Al-Supported Ideation. Example of P10 engages in an ideation session
with three role-differentiated Al colleagues. In Step 1, the challenge is introduced. In Step 2, P10 selects colleagues (User Researcher,
Data Scientist, and Software Engineer). In Step 3, the discussion unfolds: in Explore mode, the team generates diverse ideas; in
Focus mode, they converge on Trustworthy mood-aware Karaoke that balances user experience with privacy, simplicity, and local

data processing.

Most Al systems today are designed to manage tasks and execute predefined steps. This makes them effective for process coordination

but limited in their ability to engage in joint problem-solving with humans or contribute new ideas. We introduce MultiColleagues, a

multi-agent conversational system that shows how Al agents can act as colleagues by conversing with each other, sharing new ideas,
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and actively involving users in collaborative ideation. In a within-subjects study with 20 participants, we compared MultiColleagues
to a single-agent baseline. Results show that MultiColleagues fostered stronger perceptions of social presence, produced ideas rated
significantly higher in quality and novelty, and encouraged deeper elaboration. These findings demonstrate the potential of Al agents
to move beyond process partners toward colleagues that share intent, strengthen group dynamics, and collaborate with humans to

advance ideas.
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1 INTRODUCTION

Recent adoption of large language models (LLMs) has moved from deployments as “copilot” tools toward more dynamic
roles in collaborative settings. Early applications positioned LLMs as tools or judges [14, 68], automating tasks such
as summarization, programming assistance, or quality assessment that humans found repetitive or peripheral [60, 64].
Although useful, these applications positioned artificial intelligence (Al) as automation rather than as a partner in
collaboration [54], whereas emerging multi-agent frameworks suggest a broader transition [10, 28]. Systems such
as AutoGen [101] and CrewAlI [1] demonstrate how multiple LLMs can be coordinated under structured protocols,
with agents adopting complementary roles such as planner, critic, or explainer. LLMs are moving beyond single-task
execution to acting as participants that contribute perspectives in a team process.

The growing use of multi-agent frameworks prompts a deeper question of whether LLMs can be experienced not
only as tools but as colleagues in collaborative work. Collaboration between humans and models is often most produc-
tive when it leverages asymmetries in capability, with people contributing judgment, values, and imagination while
LLMs provide scale, recall, and breadth [6, 23]. Moving beyond copilot metaphors requires examining whether users
can experience these systems as team members with complementary strengths.

Ideation provides a representative context to probe this question. Research in creativity shows that human strengths
remain decisive in the early stages of idea generation. At the same time, studies show that LLM assistance can ex-
pand the number and diversity of ideas, while also risking homogenization and over-reliance [15, 57, 69]. Multi-agent
personas present a promising approach, as they can emulate interdisciplinary team dynamics, introduce diverse per-
spectives, and enable humans to retain strategic oversight. Interaction paradigms play a central role in shaping this
experience. Roundtable exchanges, hierarchical supervision, or progressive disclosure influence how people engage
with multiple agents and how cognitive load is managed [58, 109]. Besides, role-playing structures task allocation and
heightens social presence, which makes collaboration feel closer to working with teammates [8, 48].

Recent work has examined distinct facets of this design space, with systems emphasizing either divergent-convergent
structuring through staged debate and role play [57] or orchestration through contrasting roles and rotating perspec-
tives to guide reflection [70, 110]. These approaches demonstrate the value of both dimensions but have largely been
explored in isolation. Building on these directions, we introduce MultiColleagues, a multi-agent conversational system

that brings together diverse Al personas for co-ideation while centering the human as facilitator-in-chief. The system
2
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pursues three design goals: (1) supporting shifts between divergent and convergent thinking, (2) engaging diverse
viewpoints to expand the idea space, and (3) providing clear features that preserve human oversight in collaboration.
Guided by these goals, we evaluate MultiColleagues through a within-subjects study against a single-agent ChatGPT

baseline, focusing on three research questions:

(1) RQ1 - Experience: How do role-taking patterns and perceptions of social presence shape the collaborative
atmosphere and user engagement?

(2) RQ2 - Outcomes: How does exposure to multiple AI-Colleague perspectives affect the creative outcomes, and
what underlying dynamics may explain these differences?

(3) RQ3 - System Design: How do system design features support or constrain support during creative ideation?

2 RELATED WORK
2.1 From Tools to Colleagues: The Evolution of Human-Al Collaboration

Over recent years, large language models (LLMs) have emerged as transformative tools across a wide range of ap-
plications, demonstrating state-of-the-art performance in natural language processing and knowledge-intensive tasks
[47, 105]. They have been widely adopted in domains such as software development [22, 102], writing and creativity
support [19, 100], scientific research and literature review [32, 62], and scientific experimentation [12]. Across these
domains, LLMs have primarily functioned as assistants or evaluators, supporting human work by improving efficiency
and facilitating decision-making [76, 108]. Nevertheless, human-in-the-loop (HITL) involvement remains indispens-
able. Research has shown that relying on humans solely as “reviewers” can introduce risks, such as decision-making
risks [33, 82], reliability and transparency risks [7], systemic risks [79], and ethical risks [3, 46, 74]. Additional HITL
studies across domains reinforce the irreplaceable role of humans and confirm that human involvement enhances accu-
racy and reliability [52, 92]. Building on this foundation, human-centered and mixed-initiative frameworks argue that
the future of Al lies in augmentation rather than replacement, coupling higher levels of automation with sustained
human control [6, 87]. As LLMs grow more capable, systems are gradually shifting toward proactive collaboration.
Multi-agent frameworks such as AutoGen and CAMEL operationalize LLMs as differentiated collaborators [51, 101],
where models can assume specific roles, engage in mutual critique, and coordinate planning activities. Through such
structured interactions, they approximate team-like collaboration and move toward systems where LLMs function less

as tools and more as partners [27, 56].

2.2 Multi-Agent LLMs and Teamwork Dynamics

The growing capabilities of recent years’ LLMs have motivated increasing interest in multi-agent frameworks as a way
to extend the scope and complexity of applications. A first major direction examines task-decomposed collaboration,
where models are assigned complementary roles such as planning [101], execution [97], or debugging [25]. Within
this strand, researchers have proposed different coordination paradigms, including dialogic debate [27, 53] and hierar-
chical supervision [35, 102]. While these systems demonstrate gains in reasoning, factuality, and coding ability, their
evaluations remain largely confined to benchmark settings [20, 38] rather than interactive use.

A second line of work explores persona-driven role play, showing that LLMs can convincingly simulate interdisci-
plinary teamwork by adopting distinct identities. This stream highlights how personas shape more human-like inter-
action styles [50, 71, 86, 99], enhance engagement [21, 98], and diversify task performance through structured imper-
sonation [51]. Examples range from predefined expert roles in CAMEL [51], which bring complementary perspectives

3
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System User Study

System Remarks
Turn Div-Conv  Orch. In-situ Pick Ctrl

LLM Discussion (COLM’24) [57] v - - - Agents as process partners in agent-agent debate
with convergence to boost model creativity on
benchmarks.

SWTW (CHI'24) [110] 4 4 Agents as a guidance panel for progressive expo-
sure in media reading.

Weaver (CHI EA’25) [70] v v v Advisory round-table with next-speaker and sum-
maries to surface impacts.

MultiColleagues (our work) v v v 4 4 v Agents as colleagues for co-ideation with Ex-

plore/Focus and human-paced facilitation.

Table 1. Comparison of multi-agent systems. Icons: v yes, — not applicable. Turn = dynamic turn selection; Div-Conv = divergent—
convergent phases; Orch. = human-facing orchestration; In-situ = interactive study; Pick = user chooses agents; Ctrl. = controlled
(within-subjects) vs. baseline.

to task execution, to generative agents that exhibit emergent social behaviors in daily scenarios [71, 85]. Collectively,
this work points to the potential of role differentiation for strengthening social presence and aligning collaboration
with human expectations.

A third line of research focuses on coordination mechanisms that sustain coherence across longer or more complex
interactions. Efforts here include shared memory, scheduling, and blended model outputs. Skeleton-guided reason-
ing [66], model fusion [44], and collaborative decoding strategies [91] exemplify how multiple agents can combine
strengths to tackle tasks beyond the capacity of a single model. At the same time, across all three directions, prior
work consistently emphasizes the importance of human oversight for aligning decisions with user intent and prevent-
ing failures under high autonomy [5, 11, 18, 81].

As shown in Table 1, recent work has begun to explore multi-agent systems in interactive settings. LLM Discussion
[57] adopts a three-phase agent—agent debate with role-play to enhance originality and elaboration of model outputs.
SWTW [110] introduces progressively contrasting roles in media reading, using orchestration and gamified puzzles to
mitigate filter bubbles and deepen reflection. Weaver [70] organizes advisory-style roundtables with speaker rotation
and summaries to anticipate broader social impacts. While each contributes valuable orchestration strategies, they do
not combine dynamic turn-taking, divergent—convergent phases, and user-facing facilitation within controlled, in-situ
studies. Motivated by these gaps, MultiColleagues advances co-ideation by combining dynamic turn-taking, explicit
divergent-convergent shifts, and interactive orchestration, enabling a controlled study of how role differentiation and

multi-agent dynamics shape collaborative ideation.

2.3 GenAl-Assisted Ideation

Research on Al-assisted ideation has evolved from retrieval-based systems to generative, structured support. Early
tools such as IdeaHound [88], ProbMap [59], and IdeateRelate [103] used semantic similarity to surface relevant ideas
but offered limited scaffolding beyond recall. Recent systems embed generative models into interactive environments:
Jamplate organizes reflection through templates [104], BioSpark clusters LLM concepts into analogical “inspiration
cards” [45], Scideator recombines scientific paper facets to propose novel research ideas [77], and CausalMapper visu-
alizes causal relations among concepts to guide systematic exploration [42]. These systems demonstrate how generative
outputs can be transformed into higher-level structures that promote reflection, analogy, and cross-domain thinking.

Complementary approaches emphasize role-based scaffolding. PersonaFlow [55] simulated multiple expert personas to
4
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inject disciplinary perspectives, while Rayan et al. [78] leveraged generative chat to stimulate collaboration. Yet purely
textual interfaces risk fixation: listing example solutions can anchor users to narrow trajectories [16]. Spatial or hierar-
chical arrangements mitigate this risk by situating ideas in broader solution spaces, as demonstrated by tree-structured
diagrams for structured exploration [26, 107].

More recently, attention has shifted to the limitations of single-agent LLMs. Their autoregressive nature tends to-
ward convergence, limiting diversity [95]. Multi-agent approaches distribute perspectives across distinct personas to
sustain divergence and reframe models as collaborators rather than tools [31, 33]. Building on this trajectory, our
work positions LLMs as colleagues in a multi-agent environment, embedding the Double Diamond design model [24]

to balance divergence and convergence, user control and agent autonomy, toward more coherent yet diverse ideation.

3 SYSTEM DESIGN
3.1 Design Goals and Implementation

Our reflections on prior work in conversational agents for human—AI collaboration led us to articulate the following
design goals for our MultiColleagues system:

(1) DG1: Support adaptive Human-AI co-ideation dynamics. The system should enable users to fluidly navi-
gate between exploratory and evaluative phases of collaborative ideation while maintaining strategic control over the
creative process. This design goal was primarily motivated by prior research on the double diamond design process
and human creative cognition patterns, which conceptualize innovation as an iterative progression through phases of
divergent exploration and convergent refinement [24].

(2) DG2: Enable rich, multi-perspective co-ideation. The system should facilitate engagement with diverse
viewpoints and expertise domains to avoid narrow ideation patterns and encourage comprehensive exploration of
solution spaces. This design goal was motivated by prior research on interdisciplinary collaboration and the limitations
of single-agent interactions.

(3) DG3: Facilitate purposeful and transparent Human-AI collaborative control. To promote effective human-
Al synergy, the interface should provide clear interaction points and user-friendly visual interfaces that enable users to
maintain strategic oversight while leveraging Al capabilities for ideation support. This design goal emerged primarily
from prior research on human-AI teaming, highlighting the need for balanced human agency and intuitive interface
design in Al-mediated creative processes.

To address our design goals, we designed and developed MultiColleagues, a human—-AI collaborative conversa-
tional platform where multiple Al personas participate in structured brainstorming alongside the user. The system
architecture follows a two-tier design pattern: presentation layer (React frontend) and application layer (Flask API).

The system integrates OpenAl GPT-4o for natural language generation (see Figure 2).

3.1.1 Adaptive Thinking Transition Mechanisms. To support adaptive thinking transitions in collaborative ideation
(DG1), we implemented a dual-mode switching framework grounded in the double diamond design methodology, ex-
plore mode and focus mode, as illustrated within the usage flow (Fig. 3). The Explore mode emphasizes breadth and
diversity of viewpoints. During this mode, different colleague experts are encouraged to expand the space of possi-
bilities, each approaching the problem from their own perspectives and generating ideas freely without immediate
concern for constraints. Focus mode emphasizes depth, clarity, and actionable outcomes. In this stage, colleagues shift
toward evaluating, filtering, and aligning ideas, working from their own roles to concentrate on feasibility and action-

able outcomes.
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Fig. 2. System Workflow for Persona-Guided Discussions. This diagram illustrates the end-to-end workflow of the persona-
guided discussion system across five steps. The process begins with preparing the discussion by selecting Al colleagues (Step 1). The
internal system first builds a persona ranking prompt, next selects the next persona, then builds a persona prompt and generates
the corresponding reply (Step 2). The generated output is presented to the user, and the system awaits user action (Step 3). The user
performs one of three actions: type a response, continue with the system-generated reply, or call a facilitator for support (Step 4).
All logs are stored in the database (Step 5).

Our system provides effective ideation through systematic alternation between divergent exploration phases (ex-
panding problem and solution spaces) and convergent synthesis phases (evaluating, refining, and consolidating ideas).
This template-based approach ensures that thinking mode transitions extend beyond interface changes to actually
modify Al thinking processes in alignment with human creative phases.

Strategic interaction points are integrated after each Al response to preserve human agency and prevent cognitive
saturation, as we found that uninterrupted Al generation creates information overload and diminishes human creative
contribution and strategic oversight capacity [2]. These pause points enable participants to make explicit choices to
“Continue” autonomous Al discussion or “Call Facilitator” for guided intervention, which preserves human cognitive
control by preventing information saturation and enabling reflective engagement with Al-generated content before
proceeding to subsequent ideation phases (DG3).

An Al Facilitator functions as a meta-cognitive regulator that monitors conversation dynamics and intervenes at
calculated intervals when discussions deviate from productive ideation patterns, lack adequate synthesis, or fail to
incorporate diverse participant perspectives [30]. The facilitator employs real-time conversation analysis to identify
critical transition points between diamond phases. It explicitly prompts users with a quick overview of the current
conversation history, and to reflect on whether the team should continue divergent exploration or transition toward
convergent evaluation, and provides structured progress synthesis to prevent cognitive fragmentation across extended

ideation sessions.

3.1.2  Multi-Persona Orchestration System. To enable rich, multi-perspective co-ideation (DG2), the system imple-
ments a persona orchestration framework that instantiates a diverse roster of Al colleagues with distinct professional
backgrounds, communication styles, and domain expertise (see Figure 8 in Appendix D.1). Each persona is constructed
through structured configurations defining behavioral instructions for communication patterns, specialized knowl-
edge domains that establish topical authority, and participation patterns that govern engagement frequency. These
persona templates are drawn from prior works on multi-agents’ interdisciplinary collaboration [40], which show that
encoding standardized workflows into multi-agent prompts improves coordination and reduces cascading errors. We
designed the personas to interact through a multi-stage selection process. First, all selected personas generate pre-
liminary thoughts on the participant’s problem using individualized prompts. Then, an Al-driven algorithm evaluates
these responses for relevance and engagement potential, selecting the first speaker to establish a natural conversation
flow. For subsequent turns, a dynamic ranking mechanism selects the next speaking persona by scoring candidates on
6
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contextual relevance to prior user comments, conversation history, and unexpressed perspectives, while adding a 20%
randomization factor to prevent deterministic patterns. The ranking algorithm instructs the language model to iden-
tify which persona would have “the strongest urge or most relevant comment to share next” given current discussion
dynamics, ensuring diverse perspectives emerge organically rather than through artificial rotation. Once a persona is
selected, the system retrieves its prompt template and combines it with the full conversation context, the user’s most
recent input comments, and the current orchestration state (focus vs. explore). Guided by this structured input, the
language model generates the persona’s output. To sustain longer dialogues, a conversational history compression
pipeline is applied when the message count exceeds a threshold. As shown in Figure 9, recent turns’ history is kept in
full while older persona contributions are summarized, allowing the system to maintain immediate context while com-
pactly representing earlier perspectives. This compression design ensures efficiency and coherence in multi-colleague
conversations (see Appendix D.2). Detailed prompt templates for persona creation, first-speaker selection, persona

ranking, and response generation are provided in Appendix C.

3.1.3  User-Friendly Interface and Interaction Design. To maintain strategic oversight in multi-agent ideation while
preventing passive consumption of Al output, we implement user-friendly interfaces and interaction mechanisms
that enable clear control and integration points throughout collaborative discussions. Beyond the conversation flow
controls described in DG1, the system provides clear visual cues through distinctive persona profile pictures and role-
based message styling that enable users to quickly identify different Al perspectives and track individual contributions
across extended discussions. An intelligent highlighting system with user-controlled visibility allows participants to
manage information density by toggling keyword emphasis on or off, which supports cognitive load management
and preserves access to Al-generated insights. The interface enforces each persona’s conversation wording limits and
structured message threading that enhances readability during multi-agent exchanges. Besides, the thinking mode
controls enable users to explicitly switch between “explore” mode (divergent thinking) and “focus” mode (convergent
thinking), with clear visual indicators showing the current cognitive state and immediate effects on subsequent Al

behavior.

3.2 Usage Scenario

To illustrate how participants engage with the multi-agent co-ideation system, we present a typical user journey (see
Figure 3). The participant begins by selecting three AI personas (User Researcher, System Architect, and Market Ana-
lyst) and submitting the problem statement “How might we design an Al system to help remote teams collaborate more
effectively?” The system generates initial thoughts from each persona and presents the User Researcher as the first
speaker, who raises questions about user pain points in remote collaboration. During the initial exploration phase,
the participant primarily operates in “explore” mode, alternating between clicking “Continue” to observe autonomous
Al discussions and actively joining the conversation by submitting their own insights. After approximately six Al
responses covering topics ranging from technical infrastructure concerns to user experience considerations, the par-
ticipant clicks “Call Facilitator” to request guidance on discussion direction. The Al facilitator provides a synthesis
of perspectives shared so far and prompts the participant to consider whether the team should continue exploring
the problem space or begin focusing on specific solution approaches. At this point, the participant switches to “focus”
mode and submits a message, narrowing the scope to “real-time collaboration tools for creative teams.” The Al personas
now operating in convergent thinking mode, begin evaluating and synthesizing the discussed ideas, with the System
Architect proposing specific technical architectures while the User Researcher focuses on user-related principles. The

7
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ID Age  Occupation Specialization Creativity
P1 25-29  Master Student Communication 2.09
P2 25-29 PhD Student Material Science & Engineering 4.91
P3  25-29 Professional Computer Science 491
P4  20-24 Master Student Al Research 5.18
P5  25-29 Professional Information Science 7.00
P6 25-29  PhD Student Information Science 6.27
P7  20-24 Master Student NLP 4.73
P8 25-29  Professional UX Research 4.64
P9  25-29 PhD Student Computer Science 6.55
P10  25-29  Professional Design 5.27
P11  20-24 PhD Student Computer Science 4.64
P12 30-34 PhD Student Voice Interaction 6.27
P13  20-24 Undergraduate Student  HCI 5.36
P14 25-29 PhD Student Virtual Reality 6.09
P15 35-39 PhD Student Al Research 5.27
P16 30-3¢ PhD Student HCI 6.45
P17 20-24 Master Student Virtual Reality 6.00
P18 25-29  Professional Design 6.00
P19 25-29 PhD Student Machine Learning 5.18
P20 30-3¢ PhD Student Information Science 6.55

4 STUDY DESIGN

Table 2. Participant demographics and creativity scores.

To examine how different Al interaction paradigms influence creative collaboration, we designed our study structured

as follows: participant recruitment and characteristics (Section 4.1), detailed procedure including task design (Section

4.2), and data collection and analysis methodology (Section 4.3).

4.1 Participants

As shown in Table 2, our study recruited 20 participants through university mailing lists and professional networks (9
males, 11 females), aged 20-39 years (M = 26.7, SD = 3.8). 15 participants were undergraduate to PhD students pursuing
degrees in fields such as computer science, information science, HCI, Al research, and communication, while the re-
maining 5 were early-career professionals working in technology, research, and design-related roles. All participants
met our eligibility criteria of having backgrounds in relevant backgrounds and prior experience with creative problem-
solving or Al-driven tools. This study received the university’s IRB approval. Each participant was compensated with
$20. Table 2 summarizes participants’ demographics along with their creativity scores (M = 5.39, SD = 1.16). Scores
were calculated as the average of 11 items from a 7-point Likert-scale creativity assessment (see Appendix A.1 for the

full questionnaire).
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4.2 Study Procedure

Each study session lasted approximately 70 minutes and was conducted remotely via Zoom with a researcher present
to observe interactions and provide technical support when necessary. All participants experienced both systems, Mul-
tiColleagues and ChatGPT (GPT-4o0), in counterbalanced order to control for potential order effects [75]. The detailed

procedure comprised the following phases (see Figure 4 for visualized study workflow):

A semi-structured interview
gathers reflections on survey
responses, system
differences, and ideation

Demographic information
and baseline creativity
measures are collected to
establish reference points.

Participants interact with
MultiColleagues and ChatGPT in
counterbalanced order, using
think-aloud protocols and

recording ideas. processes.
(10 min) (20 min) (20 min)
Pre-Study System Semi-Structured
PP A PO Assessment et T Tl Interaction et Tl Interview
’ ‘ N . ’ ’ N Ay . ’ N Y
) \ A \ B \
Ry —
- L ! : : : D !
I ' ) ' ' ) ' ' _8 '
' - ' ' ' ' 8 '
DT UIE g Problem Teell-T Post-System Teell-T
Introduction Formulation Evaluation
(5 min) (5 min) (10 min)

Participants are welcomed,
briefed on study goals and
procedures, and provide

Participants generate and
select a personally meaningful
ideation problem to use across

After each session, participants
complete a survey rating user
experience, outcomes, system

informed consent. both systems. design & user control.

Fig. 4. User Study Workflow.

Introduction and informed consent (5 minutes): Participants were briefed on study objectives, procedures, and
data handling protocols before providing written informed consent.

Pre-study assessment (10 minutes): Participants completed demographic questionnaires capturing age, gender,
educational background, and prior experience with Al-assisted creativity tools. Additionally, participants completed
established creativity assessment instruments adapted from validated scales [80, 93] to establish baseline creative ca-
pabilities (complete items provided in Appendix A.2).

Problem formulation (5 minutes): Before experiencing systems, participants received a brief prompt on what con-
stitutes a suitable ideation problem and chose a topic they were familiar with or personally interested in. Previous
works revealed that predefined problem themes reduced participants’ engagement [63], therefore in the main study,
participants generated their own topics of interest. The same problem was used with both systems, with a counterbal-
anced order to minimize order effects [75].

System interaction phase (20 minutes total; 10 minutes per system): Participants were randomly assigned to
one of two condition orders, with equal distribution across sequences to control order effects. Think-aloud protocols
[94] were employed throughout both interactions to capture real-time cognitive processes. For both conditions, a split-
screen setup was provided with a Google Doc on the right side for recording generated ideas following each interaction.
The allocated 10-minute timeframe could be extended if deemed insufficient, and early termination was permitted upon

idea exhaustion or fatigue.
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e MultiColleagues condition: Participants received a structured tutorial (approximately 2 minutes) covering
interface navigation, persona selection mechanisms, thinking mode transitions, and facilitator function utiliza-
tion. Following orientation, participants engaged in a 10-minute guided brainstorming session employing the
multi-agent system architecture with their self-selected problem.

e Baseline condition: Participants unfamiliar with ChatGPT received a brief interface orientation focusing
on conversation initiation and prompt formulation strategies. To ensure model consistency, all participants
accessed ChatGPT through the web interface using the GPT-40 model. Participants then conducted unrestricted

text-based ideation sessions using identical problem parameters.

Post-system evaluation (10 minutes total; 5 minutes per system): Following each system interaction, participants
completed a 12-item survey on 7-point Likert scales (1 = strongly disagree, 7 = strongly agree). The survey evaluated
three key dimensions: Experience (3 items), Outcomes (3 items), and System Design & User Control (4 items). For example,
Outcomes evaluates if “I reached lots of valuable or actionable ideas that felt better than what I might have generated
alone” The complete set of 12 items is provided in Appendix A.

Semi-structured comparative interview (20 minutes): The concluding interview phase employed a structured
protocol designed to elicit detailed comparative reflections on participants’ experiences across both systems. Partici-
pants first reviewed and elaborated on their quantitative survey responses, providing contextual explanations for their
ratings. Subsequently, three targeted follow-up questions were explored: (1) the extent to which different personas pro-
vided distinctive perspectives and fulfilled unique collaborative roles, (2) how participants’ perceived relationship and
interaction patterns with Al agents differed between single-agent and multi-agent configurations, and (3) whether ex-
posure to multiple personas influenced participants’ ideation structuring processes or evaluative criteria for generated

concepts.

4.3 Evaluation Methods

To answer our research questions, we adopted a mixed-methods approach that integrates both behavioral and per-
ceptual measures. Quantitative data were collected from conversation histories and system interaction logs, comple-
mented by structured post-system evaluations of usability and creativity. Qualitative data came from semi-structured
interviews, capturing participants’ experiences with collaboration strategies, the outcomes of navigating different in-
teraction paradigms, and the utility of multi-agent versus single-agent approaches. The following sections detail our

evaluation methods.

4.3.1 Comparative Analysis of User Ratings. To statistically evaluate the 12 survey data, we employed a structured ana-
lytical approach that began with thematically grouping the questions according to our research questions, followed by
a non-parametric comparison of the two systems. The 12 questions were first organized into three core dimensions: (1)
Experience (RQ1), which captured the subjective quality of the collaboration and user engagement, as well as factors
shaping those outcomes; (2) Outcomes (RQ2), which measured the quality and novelty of the creative output; and (3)
System Design & Control (RQ3), which evaluated the user’s perceived sense of control and flexibility. To streamline
the analysis, closely related survey questions were merged into broader, more robust metrics, such as Outcome Quality
& Novelty. Given the ordinal nature of the Likert scale data and the within-subjects design of the study, we used the
non-parametric Wilcoxon signed-rank test to compare the paired ratings of MultiColleagues and Baseline for each
metric. Effect sizes were calculated as the magnitude of observed differences between conditions.

11
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4.3.2  Thematic Analysis. Two researchers conducted thematic analysis [13] of interview transcripts, independently
coding the data before reconciling differences and refining the codebook. Themes were organized around the study’s
research questions on collaborative experience, creative outcomes, and system support, with sub-themes (e.g., “Trace-

able Perspectives”) emerging through iterative discussion and grouping into role- or condition-specific insights.

4.3.3 Topics Analysis and Conversational Structures. To complement engagement-level metrics, we examined the se-
mantic structure of conversations by analyzing the number and distribution of discussion topics. We used GPT-5 with
role-based prompts to segment transcripts into main topics (high-level themes) and sub-topics (supporting details). We
chose GPT-5 as evaluator for its state-of-the-art reasoning and judgment capabilities across domains to ensure reliable
idea assessment [96]. To mitigate stochastic variability, each conversation was processed three times and the results
averaged. All outputs were subsequently reviewed by a researcher for alignment with coding criteria. Based on these
annotations, we calculated a branching ratio, defined as the mean number of sub-topics associated with each main
topic. This metric characterizes whether conversations progressed more linearly (lower branching) or expanded into
multi-threaded explorations (higher branching). To ensure comparability across sessions of different lengths, topic
counts were normalized by conversation duration, producing topics per minute and sub-topics per minute as indicators
of topical density. In addition, we calculated the average time per main topic and time per sub-topic to reflect the extent

of conversational investment in individual ideas.

5 RESULTS

We organize the results into two parts. First, we report log analyses that establish overall interaction statistics in the
MultiColleagues condition (Section 5.1). Our descriptive results capture how participants engaged with the system in
terms of colleague selection patterns and message distributions, providing context for interpreting subsequent find-
ings. The remainder of the results sections (Section 5.1, 5.2, 5.3) are structured around our three research questions,
combining survey responses, conversation logs, and interviews. For RQ1 (Experience), we examine how role-taking
patterns and perceptions of social presence shaped participants’ collaborative atmosphere and engagement. For RQ2
(Outcomes), we assess how exposure to multiple AI-Colleague perspectives influenced the quality, novelty, and orga-
nization of creative outputs. For RQ3 (System Support), we evaluate how system design features affected participants’

sense of agency, control, and flexibility during ideation.

5.1 Overview of Participants’ Interaction Statistics

To contextualize participants’ engagement with MultiColleagues, we first examined colleague selection patterns, fol-
lowed by interaction statistics across sessions. The analysis revealed substantial variance in Al colleague choices, with
95% unique persona combinations across 20 participants. This diversity reflects strong individual differences in how
participants valued expertise for ideation, suggesting that effective collaboration benefits from accommodating varied
teaming preferences.

Turning to conversational dynamics, multi-chat sessions included an average of M = 4.00 personas (SD = 1.00), rang-
ing from three to seven colleagues. On average, each session contained 31.3 utterances, while participants contributed
M = 8.3 utterances (26.7%). To avoid overweighting the Al presence by summing across multiple colleagues, we exam-
ined the average contribution per Al colleague. Individual colleagues produced M = 5.04 utterances (SD = 1.63). This
indicates that while Al colleagues collectively sustained much of the conversational flow, each colleague’s contribution
was comparable in magnitude to that of the human participant, suggesting a more balanced distribution of interaction.

12
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5.2 RQ1: Collaborative Experience with Multi-Al Colleagues

To address RQ1, we operationalized collaborative experience into three dimensions: complementary strengths, teammate-
like relationships, and engagement. We observed significant differences across all, with MultiColleagues rated more
positively than Baseline. We present results for each dimension below, drawing on both post-system evaluation re-

sponses (Table 3) and interviews.

Metric Q# MC(M=<=SD) Baseline(M+SD) W p-value Effect Size (r)
Teammate-like Feel Q6 5.75 + 1.02 5.05 + 1.15 17.5 .046" 0.49
Complementary Strengths Q8 6.05 £ 1.00 5.05 £ 1.64 25  <.01*" 0.71
Engagement & Flow Q10 5.70 + 1.38 4.45 £ 1.57 30.0 .014" 0.63

Table 3. Statistical Comparison for Process & Experience Metrics between MultiColleagues (MC) and Baseline. Results show
significantly higher ratings for MC across all 3 metrics.

5.2.1 Distributed Collaboration Enhances Complementary Strengths. Survey results and interview reflections consis-
tently emphasized that MultiColleagues enabled a stronger sense of distributed collaboration, where different Al col-
leagues contributed complementary strengths to the discussion from distinct angles. During the interview, we first
invited participants to reflect on their collaborations whether they felt colleagues served distinctive roles and offered
perspectives from different angles on a 7-point Likert scale. Findings confirm that most participants perceived col-
leagues as differentiated contributors (M = 5.85, SD = 1.09). Moreover, survey comparisons showed that participants
rated the MultiColleagues condition (M = 6.05, SD = 1.00) significantly higher than the Baseline condition (M = 5.05,
SD = 1.64; W = 2.5, p <.01) in terms of contributing different views and strengths to the ideation process. These quan-
titative findings indicate that participants more often framed the multi-agent system as a team of collaborators rather
than a single tool. Echoing the survey results, rather than relying on a single expert voice, participants described the
system as a collection of distributed roles that encouraged them to participate more actively in the interview. As P3
reflected, “it actually encourages me to join in the thinking process... like one of the people in the conversation,” while
P19 valued how “[AI colleagues’] contributions complement each other.” This role separation often gave participants
the impression of working with a team of specialists, with P10 noting that the role-playing “makes you feel more that
everyone is contributing their strength”

At the same time, participants recognized trade-offs in this distributed setup. Some noted that Al colleagues tended
to remain bounded within their professional domains, with P2 observing that “they’re limited to their professional
aspects,” and P18 describing the system as expanding by “giving you another island” rather than filling out an existing
territory. This metaphor reflected how colleagues generated separate contributions without consolidating expertise and
broader topical coverage. By contrast, participants characterized the Baseline condition’s responses as “more academic
and useful with wider scope” (P2) and emphasized its ability to fill in missing details to make ideas more complete (P18).
In this sense, Baseline offered more integrated coverage within a single agent, while MultiColleagues emerged from

the aggregate of multiple narrower perspectives, offering breadth across roles.

5.2.2 Colleague Roles Enable Facilitative Leadership. Findings from the interview showed that MultiColleagues gener-
ated facilitative leadership through distributed expertise. Since understanding multiple Al colleagues’ voices required
oversight and integration, participants often stepped into coordinator or facilitator roles. P3 explained that it “encour-

ages me to join in the thinking process... like one of the people in the conversation,” while P5 reflected, “I really feel
13
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like 'm in front of this team, and they have to deliver their ideas to me, so I might feel that my sense of power is a little
higher” Importantly, this authority felt collaborative rather than authoritarian, with P16 noting, “I felt somewhere be-
tween leader, facilitator, but I definitely had the feeling of a collaborator” The distribution of roles across Al colleagues
demanded that users manage the collaborative process, as P17 described: “feel like chatting with my team in Slack, I
can freely let whoever I want to speak out. I have a role feeling — like a PM [project manager].” The Baseline condition,
in contrast, consolidated expertise into a single authoritative voice, reinforcing structured authority relations. Some
participants described it as “a very senior-level expert who can immediately give you a very complete, very detailed
plan” (P3), while others positioned themselves as supervisors with an assistant: “I feel like a boss. I'm just asking my
assistant to fetch something for me” (P19). Yet even in supervisory roles, participants still noted how the Baseline
condition shaped their thinking, with P12 reflecting, I feel like I'm the boss... but [Baseline] reshapes how I think, so
it has more power.” These accounts illustrate how MultiColleagues’ distributed roles fostered facilitative leadership,

while Baseline’s consolidated expertise reinforced stable hierarchical structures.

Metric MC (M +SD) Baseline(M+SD) W  p-value Effect Size (r)
Linguistic Cohesion Metrics

Narrativity 24.40 £ 14.50 18.62 + 15.62 59.0 .090 1.58

Syntactic Simplicity 28.62 £ 15.72 28.83 £ 19.62 92.0 .648 2.46

Word Concreteness 15.13 £ 17.71 19.13 £ 19.24 82.0 409 2.19

Referential Cohesion  27.25 + 18.55 25.42 + 20.63 96.0 756 2.57

Pragmatic / Interaction Style Metrics

Sentiment 444 + 0.41 4.46 £ 0.33 104.0 .985 2.78
Formality 4.00 £ 0.42 4.08 £ 0.63 80.0 368 2.14
Directness 476 £ 0.23 5.05 + 0.44 30.0 .009** 0.80
Relationship 4.39 £ 0.34 417 £ 044 88.0 .545 2.35
Participation 4.29 £ 0.67 4.09 + 1.07 87.0 521 2.33

Table 4. Statistical Comparison of Linguistic Cohesion and Pragmatic Style Metrics between MultiColleagues (MC) and Baseline.
Results show a significant difference in Directness of conversational style.

5.2.3 Team-Like Atmospheres Shape Collaborative Experience. Survey results indicated that the distribution of roles
in MultiColleagues fostered a stronger sense of team-like interaction, with participants rating MultiColleagues (M =
5.75, SD = 1.02) significantly higher than the Baseline condition (M = 5.05, SD = 1.15; W = 17.5, p = .046). These results
suggest that the system’s role differentiation encouraged participants to experience the interaction as more socially
collaborative. Interview reflections further highlighted how role differentiation created a team-like dynamic. P5 noting
that “everyone has their own role... it’s a very social state” and P10 adding that role-playing “makes you feel more that
everyone is contributing their strength.” Others described a heightened sense of immersion, as P19 reflected that the
team atmosphere “naturally facilitate[d] or control[led] the direction of the discussion” For a few, this immersion was
sufficiently strong to diminish the perceived boundary between human-Al contributions, with P9 recalling, “I felt like I
forgot they were Al [colleagues].” By contrast, interview accounts of the Baseline condition consistently depicted it as
neutral and instrumental. Participants described it as a source to “seek an answer and take the answer away” (P5). P9
echoed this perspective, “When I use it, I am a human being and [Baseline] is just a tool.  don’t feel it is my teammate”
14
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Overall, while the Baseline condition was regarded as efficient and authoritative, MultiColleagues’ role differentiation
cultivated stronger social immersion, reinforced the sense of presence, and encouraged more collaborative engagement.

To examine whether this heightened sense of team-like atmosphere was also reflected in participants’ own language,
we analyzed linguistic cohesion metrics from Coh-Metrix [34, 61] alongside pragmatic style ratings across conditions
(see detailed methods in Appendix B.1). Results presented in Table 4 showed a significant difference in Directness, with
the Baseline condition (M = 5.82, SD = 0.91) rated significantly higher than the MultiColleagues condition (M = 5.21,
SD = 0.88; W = 30.0, p = .009), suggesting that interactions with Baseline elicited more straightforward, task-focused

language. Other contrasts did not reach statistical significance.

Metric MC (M +SD) Baseline(M+SD) W  p-value Effect Size (r)
# of Utterances 8.35 +5.79 4.10 + 2.45 9.5 .001"* 0.71
Total User Words 104.70 £ 55.85 51.30 £ 42.47 18.0 <.001*** 0.73
# of Utterances per Minute 0.65 + 0.38 0.42 £0.23 125.0 .044* 0.32
Total User Words per Minute 8.12+4.25 5.12 + 3.67 119.0 .029* 0.35
Average Word Count per Message  13.47 + 4.65 12.83 £ 9.12 68.0 177 0.31
Session Duration (minutes) 12.90 £ 2.80 9.80 + 2.30 33.0 .006** 0.60

Table 5. Statistical Comparison of User Interaction Metrics between MultiColleagues (MC) and Baseline.

5.2.4 Engagement and Flow Enhance Collaborative Immersion. Participants reported experiencing stronger engage-
ment and conversational flow in MultiColleagues, with significantly higher ratings in the MultiColleagues condition
(M = 5.70, SD = 1.38) compared to the Baseline condition (M = 4.45, SD = 1.57; W = 30.0, p = .014). Behavioral inter-
action measures further reinforced this pattern (Table 5). Participants contributed nearly twice as many utterances
in MultiColleagues (M = 8.35, SD = 5.79) than in the Baseline condition (M = 4.10, SD = 2.45; W = 9.5, p = .001) and
produced substantially more words overall (W = 18, p < .001). Sessions also lasted longer in MultiColleagues (M = 12.90,
SD = 2.80) compared to Baseline (M = 9.80, SD = 2.30; W = 33, p = .006), suggesting that participants remained more
cognitively and temporally invested when coordinating multiple voices. Interview reflections echoed these dynamics.
P5 explained, “I feel like in my discussions, 'm constantly prompting new information and asking for new information,
kind of wanting to lead the discussion. I feel I'm more like a facilitator” Others emphasized how the incremental de-
livery kept them attentive and invested (P3, P10, P12). While MultiColleagues fostered ongoing involvement, Baseline
condition’s one-shot responses were often described as efficient but less engaging. P19 described the interaction as
“relatively one-way, like a presentation... I just pick what I want,” and P8 admitting, “I didn’t feel like we were collabo-
rating... I just wanted to hear its perspective” These findings show that MultiColleagues’ structured rhythm sustained

deeper immersion and engagement, while Baseline delivered efficiency at the cost of shallower participation.

5.3 RQ2: Impact of Multiple Al Perspectives on Creative Outcomes

To address RQ2, we examined participants’ evaluations of creative outcomes along three dimensions: creative explo-
ration, process enrichment, and outcome quality and novelty. Results indicate that MultiColleagues was consistently
rated more favorably than Baseline, with significant differences observed for creative exploration as well as for out-

come quality and novelty (Table 6).
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Metric O# MC (M +SD) Baseline(M+SD) W p-value Effect Size (r)
Creative Exploration Q1,04 6.00 + 0.87 4.95 + 1.55 31.5 .018" 0.63
Process Enrichment Q3 5.80 + 1.20 5.00 £ 1.72 22.5 .054 0.45
Outcome Quality & Novelty Q5,Q7  5.95 £ 0.92 4.97 + 1.16 17.0  <.01™* 0.69

Table 6. Statistical Comparison for Performance & Integration Metrics between MultiColleagues (MC) and Baseline. Results
show significantly higher ratings for MC on Creative Exploration and Outcome Quality & Novelty.

Comparative Analysis of Topic Discussion Patterns: MultiColleagues vs. Baseline(GPT)

Topic Elaboration

Main-topic Generation Sub-topic Generation Ratio Time Investment Time Investment
Rate Rate (p = 0.430) per Main-topic per Sub-topic
sof 372138567
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Fig. 5. This figure compares discussion patterns between MultiColleagues and Baseline. Baseline generated main topics (0.78 vs.
0.36 per minute) and sub-topics (3.09 vs. 1.25 per minute) at a faster rate, but branching ratios were comparable. MultiColleagues
invested significantly more time per topic (2.93 vs. 1.39 minutes) and per sub-topic (0.91 vs. 0.36 minutes), supporting a slower, more
deliberate style that enabled sustained idea elaboration.

5.3.1 MultiColleagues Broadens Creative Exploration. Survey measures confirmed that participants experienced greater
creative exploration with MultiColleagues (M = 6.00, SD = 0.87) than with the Baseline condition (M = 4.95, SD = 1.55;
W =315, p =.018). To understand this difference, we analyzed conversational topical patterns, focusing on the pace at
which new topics were introduced and the time spent developing them. In Figure 5, we found that Baseline produced
new content at a faster pace, with more main topics per minute (M = 0.78 vs. 0.36, SD = 0.19 vs 0.07; W = 0.0, p <
.001) and more sub-topics per minute (M = 3.09 vs. 1.25, SD = 0.89 vs 0.29; W = 0.0, p < .001). However, the branching
ratio showed only a modest difference, with Baseline producing a slightly higher average branching ratio (M = 3.86,
SD = 0.49) compared to MultiColleagues (M = 3.72, SD = 0.60; W = 83.0, p = 0.43), which indicates both systems sup-
ported relatively similar topical divergence levels. However, for investigating participants’ time investment per topic,
we found that participants in MultiColleagues resulted in more sustained exploration of each idea, where they spent
over twice as much time on a single main topic (M = 2.93 vs. 1.39 min, SD = 0.71 vs. 0.36 min; W = 0.0, p < .001)
and on each sub-topic (M = 0.91 vs. 0.36 min, SD = 0.40 vs. 0.14 min; W = 0.0, p < .001). This pattern indicates that
MultiColleagues facilitated sustained exploration rather than rapid topic turnover. Interview reflections reinforced this
sustained style of exploration. Several participants noted that the Baseline condition’s “large initial response” often
felt like “a presentation you just read” (P19), which discouraged further exploration. By contrast, MultiColleagues en-
couraged participants to “proactively join to think and discuss” when only a few points were offered (P3). These results
16
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demonstrate that MultiColleagues broadened creative exploration by sustaining user-driven idea development beyond

Baseline’s faster topical output.

5.3.2  Traceable Perspectives Enable Structured Integration. We found from interviews that the traceability of perspec-
tives in MultiColleagues supported participants’ ability to integrate ideas. Because contributions were anchored to
distinct Al colleagues, participants reported it was easier to follow up, remember, and combine ideas into coherent
outcomes. P4 reflected that hearing “different angles, different perspectives” made the information “stay in your mind
rather than just flashing by,” while P3 emphasized the system “divides into several colleagues... when I want to go
deeper, I clearly know which one to talk to.” These role-based distinctions provided a clear map of where ideas origi-
nated, helping participants balance and integrate perspectives into more structured outputs. In contrast, the Baseline
condition merged perspectives into a single response. While this blending reduced the ability to trace individual con-
tributions, it benefited comprehensive coverage, offering “extensive lists and complete answers” when participants
wanted a consolidated view (P2, P4, P6, P19).

5.3.3  Conversational Rhythm Supports Idea Quality and Novelty. Self-reported measures indicated that participants
generated higher-quality and more novel ideas with MultiColleagues, with ratings significantly higher in the Multi-
Colleagues condition (M = 5.95, SD = 0.92) than in the Baseline condition (M = 4.97, SD = 1.16; W = 17.0, p < .01). To
better assess the uniqueness of participants’ ideation, we performed TTCT analysis of originality [17, 31, 36, 37] (see
details in Appendix B.2). The results showed that MultiColleagues (M = 3.78, SD = 0.38) scored higher than Baseline
(M =3.59, SD = 0.44; W = 70.0, p = .202), though this difference was not statistically significant. Despite this, partici-
pants consistently perceived MultiColleagues’ outputs as more original. Interview accounts explained this perception
by pointing to the rhythm of idea generation. Participants emphasized that MultiColleagues generated ideas progres-
sively, in a rhythm they described as “digestible... aligned with the rhythm of human discussion” (P19). This stepwise
unfolding supported a process of guided discovery, where ideas “emerge through guided conversation” (P2) and de-
veloped like a “chain of thought” (P16). In contrast, Baseline often produced an immediate burst of ideas. Participants
acknowledged these outputs as “very creative right from the start” (P2), yet also noted that the density could feel
overwhelming. Several reported that this rapid surge made it harder to refine and act on ideas, compared to the more

deliberate, incremental approach offered by MultiColleagues (P3, P5, P15).

5.3.4 Breadth-Depth Trade-offs Shape Outcome Enrichment. Survey measures suggested that outcome enrichment
was marginally stronger in the MultiColleagues condition (M = 5.80, SD = 1.20) compared to the Baseline condition
(M =5.00, SD = 1.72; W = 22.5, p = .054). This pattern reflects a breadth—depth trade-off between two systems. Inter-
view reflections described MultiColleagues as a breadth-first approach, expanding the solution space through multiple
diverse perspectives. Participants valued its ability to enrich the early, exploratory stages of ideation. P1 noted that it
was effective for “expanding ideas,” while P7 described its output felt “comprehensive” because it integrated “multiple
angles [such as] logic and marketing,” thereby fostering cross-functional thinking. This breadth encouraged novelty
and variety but often came at the cost of providing concrete, actionable details. In contrast, the Baseline condition
was viewed as a depth-first tool, excelling at producing more focused, polished, and immediately usable outcomes.
P4 explained that it went “a step further” than MultiColleagues by providing tangible examples like “sample data,”

which offered a “more concrete understanding of how to process a dataset” Other highlighted its utility for “executive
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decision-making” (P6) and for “executing idea and goal” (P12). This depth and implementability gave Baseline an ad-
vantage in later-stage tasks requiring clarity and execution, whereas MultiColleagues dominated in the initial phase

by maximizing creative possibilities.

5.4 RQ3: System Design Features and User Agency in Creative Ideation

We evaluated how system design features influenced user agency (RQ3) during creative ideation across four metrics:
user guidance, user control, adaptive thinking mode, and future use intent. As shown in Table 7, MultiColleagues

received significantly higher ratings than Baseline for user control and adaptive thinking mode.

Metric Q# MC (M +SD) Baseline(M+SD) W p-value Effect Size (r)
User Guidance Q2 5.85 + 1.09 5.40 + 1.39 345 436 0.23
User Control Q12 5.80 + 1.32 4.40 +1.79 27.0  .033" 0.55
Adaptive Thinking Mode Q9 5.90 + 1.29 4.60 + 1.70 16.5 .023* 0.58
Future Use Intent Q11 6.15 + 1.09 5.50 + 1.61 11.5 .098 0.38

Table 7. Statistical Comparison for Agency & Control Metrics between MultiColleagues (MC) and Baseline. Results show signif-
icantly higher ratings for MC on User Control and Adaptive Thinking Mode.

5.4.1 Autonomous Versus Manual Direction Shape User Guidance. Participants’ ratings on user guidance indicated no
significant difference between MultiColleagues (M = 5.85, SD = 1.09) and Baseline conditions (M = 5.40, SD = 1.39; W
= 34.5, p = .436). Nonetheless, interview findings revealed that the two systems supported user guidance in distinct
ways. MultiColleagues was described as more autonomous, with participants noting that once a question was posed,
the system could sustain its own line of discussion. Participants explained, “I can throw out a question, then they start
an intense discussion” (P13, P15). This process was perceived as unfolding like a “chain of thought” (P16), where initial
contributions created openings for participants to engage selectively. As P3 explained, “It gives you 1-2 points first,
so you will proactively join to think and discuss”. However, this autonomy also carried drawbacks, as conversations
sometimes drifted from the intended focus and required effort to redirect (P12, P13). In contrast, interview accounts
of the Baseline condition highlighted its reliance on manual direction. Participants described it as “question-answer,
question-answer... I have to tell it what I want to do next for each step” (P13). While this approach offered precise
control, it was effort-intensive and likened to “guid[ing] it in a very formal way, just like prompt engineering” (P16).
Its polished and comprehensive outputs could also constrain participation, leaving some participants “lost, don’t know

how to chat or continue” (P3).

5.4.2 MultiColleagues Empowers Participants with Greater Control. Participants reported a significantly stronger sense
of control when working with MultiColleagues (M = 5.80, SD = 1.32) compared to Baseline (M = 4.40, SD = 1.79; W
= 27.0, p = .033). Interview reflections provided further insight into this perceived control through two main factors.
First, participants attributed the enhanced control to MultiColleagues’ support for shifting between explore and focus
thinking modes. Participants could “move from exploring new ideas to working on a specific one” (P9) and “control it if
I don’t want it to be divergent” (P19). In contrast, the Baseline condition offered no such flexibility, leaving participants
feeling they were “always fixing its direction” (P9). However, some valued its chunked, turn-by-turn dialogue, which

created opportunities to “chime in to change direction at any time (P19).” Second, participants associated greater control

with the system’s alignment to their own goals. MultiColleagues was described as “more engaged, better aligned with
18
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my original direction” (P12), and even supported leadership skills, as P16 noted, “I was able to bring in other agents
when they were being quiet, which is actually a great team leadership learning experience” By contrast, Baseline was
seen as “strong, professional, very dominant” (P3) to overshadow participants’ intent.

At the same time, participants in interviews also acknowledged trade-offs in managing multiple colleagues’ voices.
Unlike Baseline, which was described as linear and predictable (P6), MultiColleagues required greater coordination
effort. Participants pointed out that the diversity of roles occasionally caused drift, requiring “firm willpower to keep
this conversation stable” (P6) or effort to pull Al colleagues “back on track” (P12, P13). P8 also described subtle “so-
cial pressure” when navigating overlapping perspectives. Overall, we found that MultiColleagues offered flexible and

participatory control but demanded coordination, whereas Baseline provided predictable yet more rigid control.

5.4.3 Adaptive Thinking Mode Strengthens Flexibility in Ideation. Survey results showed that participants rated Multi-
Colleagues (M = 5.90, SD = 1.29) significantly higher on adaptive thinking mode compared to the Baseline condition
(M = 4.60, SD = 1.70; W = 16.5, p = .023), indicating stronger support for shifting between exploration and focus
during ideation. Interview reflections further explained this flexibility. Participants emphasized MultiColleagues’ abil-
ity to deliberately transition between divergent and convergent thinking, which they saw as central to managing the
creative process. They described being able to “move from exploring new ideas to working on a specific one” (P9),
and “control it if I don’t want it to be divergent” (P19). Facilitation further supported these shifts by prompting reflec-
tion and offering lightweight guidance without imposing direction. Participants valued being asked whether to “dive
deeper” or “explore other” directions (P15, P7), which helped them regulate attention and decide when to transition.
As P6 described, the facilitator acted more as “a guide,” providing reminders and summaries that supported concentra-
tion without steering outcomes. Participants also highlighted the value of explicit, manual controls for shifting modes.
Button-based toggles made transitions quicker and more natural within the flow of ideation, reducing the need to type
additional instructions. As P19 described, “the quickest way is to click to switch,” while P20 noted that visible controls
were preferable because “I don’t have to type so many words, I can just click” Beyond convenience, this design also

provided a structural trace of shifts, helping participants track how their workflow moved between breadth and depth.

5.4.4 Future Use Intent Depends on Task Stage and Context. Survey results reflected participants’ high intent to use
both systems, with MultiColleagues (M = 6.15, SD = 1.09) rated slightly higher than the Baseline condition (M = 5.50,
SD = 1.61; W = 11.5, p = .098), though the difference was not statistically significant. Interview reflections further re-
vealed how adoption was shaped by task stages and context. Many participants described a staged workflow in which
MultiColleagues was used early to generate and expand ideas, followed by the Baseline condition to validate, refine,
or translate those ideas into actionable steps (P6, P10). For example, P6 explained they would “start from [MultiCol-
leagues] to find good new ideas, then bring this idea to [Baseline]” for detailed implementation, while P10 planned to
“discuss a few ideas first” with MultiColleagues and then use Baseline to analyze feasibility and trade-offs. Besides, the
suitability of each system was also tied to problem clarity. MultiColleagues was seen as particularly useful when ques-
tions required compound perspectives or when participants sought to brainstorm from multiple angles (P8, P18, P20).
By contrast, the Baseline condition was considered more efficient and specific for narrow, practical, or well-defined
tasks (P13, P15, P17). Participants also noted limitations during interviews. MultiColleagues was considered more suit-
able for large or complex problems that benefit from multiple perspectives (P7), ut some highlighted challenges such
as a steeper learning curve and the need for longer engagement to fully realize its value (P9). These accounts suggest
that future use is less about preferring one system overall and more about strategically aligning each with the stage,

scope, and complexity of the problem at hand.
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6.1 Summary of Results
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1020 Our study demonstrates how MultiColleagues, a multi-agent conversational system, reshapes collaborative ideation

1030 compared to single-agent baselines. First, for RQ1 - Collaborative Experience, MultiColleagues fostered a dis-

1 tributed, team-like atmosphere. Participants reported stronger team-like feelings and complementary strengths across
1032
33 roles. Engagement also increased, with nearly twice as many utterances, longer sessions, and more words produced
1034 overall, reflecting a shift from passive receipt to facilitative coordination. For RQ2 - Creative Outcomes, multiple

1035 AT perspectives supported broader and deeper exploration: participants spent more time developing each idea topic
1036

and producing outputs judged higher in quality and novelty. For RQ3 - System Design and User Agency, MultiCol-

1037
35 leagues enabled stronger perceived control and more adaptive thinking mode support for switching between divergent
1030 and convergent thinking. Although autonomy sometimes led to conversational drift, participants valued the ability to
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steer discussions, regulate rhythm, and align outputs with evolving goals. Our results indicate that multi-agent sys-
tems shift ideation from tool use toward dynamics that resemble collegial teamwork. Building on these findings, we
outline key design implications that translate observed collaboration patterns into actionable directions for future

system design, detailed in the following sections (Figure 6).

6.2 Expanding Perspectives through Proactive Multi-Agent Collaboration

Our study demonstrated how MultiColleagues broadened user perspectives by combining multiple voices with proac-
tive contributions. Instead of passively awaiting prompts, colleagues anticipated latent needs and introduced dimen-
sions users had not explicitly considered, thereby helping them move beyond current frames of thought. At the same
time, colleagues did not simply deliver isolated or premature convergence ideas [31]; they engaged in internal contrasts
and comparisons, allowing alternative viewpoints to emerge and be weighed before reaching the user. Building on this,
we frame the MultiColleagues system as a foundation for multi-voiced conversation, where diverse Al colleagues con-
tribute proactively and in contrast to one another, creating exchanges that are both cognitively supportive and closer

to real teamwork.

6.2.1 Design Implication 1: Supporting Proactive and Multi-voiced Colleagues. Prior work has noted the risks of homo-
geneous perspectives in Al systems, while also emphasizing the potential of multi-agent conversation to counteract
them by surfacing diverse viewpoints and stimulating creative exchanges [57, 70, 110]. Our study extends this line of
inquiry by showing how participants valued proactive need recognition and autonomous idea development as mech-
anisms to broaden perspectives and sustain engagement. To function as more autonomous, team-like collaborators,
AI colleagues should not only anticipate latent user needs but also initiate their own debates and substantiate claims
with evidence. Building on prior work showing how generative agents can sustain memory and social interaction
over time [71], future systems should also consider how designs can scale from small groups of colleagues to larger
collectives while preserving the richness of multiple perspectives [72]. By synthesizing diverse viewpoints internally
and proactively, such systems can provide more balanced and well-reasoned insights that better leverage collective

intelligence.

6.3 Orchestrating Many Voices: Designing Multi-Agent Colleagues for Seamless Collaboration

While multi-agent autonomy offers opportunities for richer perspectives, it also raises challenges of coordination and
control. Our MultiColleagues system demonstrated how multi-agent conversation supports idea integration by making
perspectives traceable and diversifying problem-solving. Unlike single-model interactions that remain sequential and
Q&A-driven, MultiColleagues exchanges naturally introduced complementary viewpoints, encouraging participants
to synthesize across roles. The progressive orchestration of colleagues promoted smoother collaboration by breaking

down problems into multiple angles and guiding participants toward more deliberate integration of ideas.

6.3.1 Design Implication 2: Structuring Conversations for Seamless Flow. Managing contributions from multiple AI
colleagues requires orchestration strategies that surface diverse perspectives without overwhelming users. Prior work
highlights approaches such as round-table settings, sequential workflows, phased role-play, and chat-based interface
for balancing diversity and order in multi-agent systems [25, 57, 70, 73]. Our study extends this work by showing that a
conversational chat style with clear turn-taking reduced barriers to entry, preserved distributed expertise, and created
a digestible rhythm that supported both engagement and coordination.

21
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Yet questions remain about how best to orchestrate multi-agent conversations across different user groups and task
contexts. While sequential turn-taking fostered clarity, participants also envisioned more flexible designs, such as re-
configuring colleagues mid-discussion, introducing simultaneous responses, or staging role-based debates. Addressing
the cognitive complexity of many voices further calls for visual orchestration aids, such as color-coded dialogue flows
or labeled discussion maps, that provide overviews and allow lightweight steering of complex exchanges. Future re-
search should explore how adaptive orchestration mechanisms, ranging from sequential turns to parallel exchanges,
can dynamically adjust based on user preferences, task phases, or cognitive load, moving toward seamless collaboration

experiences that scale across diverse ideation tasks.

6.3.2 Design Implication 3: Designing Visualization and Identity for Recognizable Colleagues. The appearance and iden-
tity cues of Al colleagues play a critical role in shaping how users perceive and engage with them, often creating a
heightened sense of “being in a team” (P5). To evoke this social presence in our system, we assigned distinct profile
avatars to each colleague, closely resembling profile pictures in real-world office platforms. This design choice assisted
participants with a familiar visual anchor and reinforced the impression that they were collaborating with recogniz-
able teammates rather than interacting with abstract system outputs. Looking forward, effective collaboration requires
moving beyond simple profile images toward a more comprehensive identity package. Recent HCI research shows that
projecting digital colleagues into office spaces [67], rendering two-dimensional images as three-dimensional avatars
[39], and employing AR-based or customized avatars in meetings [89] can strengthen social presence and improve
perceptions of credibility in group work [83, 84]. At the same time, visual identity design must avoid reinforcing stereo-
types, since default gendering or normative depictions risk perpetuating bias [4]. Providing gender-neutral options,
diverse visual styles, and customizable pronouns ensures Al colleagues are both recognizable and inclusive, which in

turn supports more authentic and equitable collaboration.

6.3.3 Design Implication 4: Orchestrating Conversational Style for Socialized and Contextual Interactions. The commu-
nicative style of Al colleagues strongly influenced how smoothly information was exchanged and understood. Users’
interactions felt closer to peer-to-peer collaboration rather than mechanical delivery when Al responses adopted a
more approachable and adaptable tone that could be polite, occasionally humorous, or appropriately formal. Subtle
stylistic shifts created a sense of social presence across conversations that resemble real workplace exchanges and mak-
ing shared content easier to follow. In addition, response length also shaped the rhythm of collaboration. Participants
reflected that longer outputs were described as valuable in “focus mode” to offer more in-depth reasoning, while shorter
and contextualized statements helped anchor contributions without overwhelming the discussion. Future works could
focus on designing adaptive mechanisms that vary in verbosity across phases of a task, from elaboration at the outset

to concise handovers later, that can support both breadth-depth exploration and efficient knowledge sharing.

6.4 From “Many Agents” to “Colleagues”: Establishing Peer-Like Roles and Trust

Building on the foundations of multi-perspective proactivity (Section 6.2) and seamless orchestration (Section 6.3), a
further step is required before Al can be regarded as genuine colleagues rather than mere tools: their contributions
must be perceived as trustworthy and worth integrating. Our study shows that multi-agent role-playing can signif-
icantly reshape how users perceive Al systems. Compared to single-agent interactions, MultiColleagues fostered a
stronger sense of teamwork: participants described the experience as “hosting a meeting” where different personas
consistently contributed ideas and played distinct roles. Some noted that the system felt “between a tool and a team-

mate” (P9), capturing the transitional stage from instrumentality to collegiality. More importantly, the stability of
22
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persona responses and the diversity of perspectives encouraged participants to consider Al contributions as reliable
and substantive, laying the groundwork for emerging trust (P20). This aligns with recent HCI work on multi-agent
conversational systems, demonstrating that structured role distribution and visible participation can create stronger

impressions of social presence and team-like collaboration [70, 90].

6.4.1 Design Implication 5: Embedding Evidential Transparency for Trust Calibration. Our findings suggest that users
are more willing to treat agent contributions as “worth considering” when the reasoning and provenance behind
those contributions are visible. Role-playing alone is insufficient to establish trust and may risk being perceived as
performative. Systems therefore need to embed verifiable traces into persona responses, such as inline references,
source tags, or concise capability statements [106]. This allows users to judge which information is reliable and prevents
blind reliance on Al outputs [41, 49]. In this sense, transparency becomes a second layer of trust beyond social presence,

enabling users to calibrate adoption of Al suggestions in the same way they evaluate colleagues’ inputs [29].

6.4.2 Design Implication 6: Sustaining Social Presence with Visible Accountability. Trust in colleagueship also depends
on the agent’s consistent presence and accountability. When a persona remained silent or inactive, participants im-
mediately associated it with “an irresponsible coworker in a meeting,” which undermined both trust and the sense of
teamwork. To address this, systems should incorporate interface mechanisms that maintain the visibility of each per-
sona’s contributions, such as surfacing participation levels or signaling inactive participation. Such visibility ensures
that personas are perceived not only as multiple voices but also as accountable members of a social group [29, 70, 110].
By making contributions consistently observable, users can move beyond a purely supervisory stance and begin to

regard Al as reliable discussion partners.

6.5 Ethical Considerations

The move toward Al as colleagues also raises significant ethical questions. As Al systems increasingly contribute
to creative work, scientific discovery, and decision-making, the boundaries of authorship and accountability become
less clear. For example, in recent academic venues, the emergence of Al as listed co-authors and even first authors
illustrates both the promise and the tension of this trajectory [9, 43]. While such visibility acknowledges the substantive
role of Al in knowledge production, it also challenges long-standing norms of intellectual credit and responsibility.
Beyond authorship, issues of transparency, bias, and user agency must be addressed. As Al colleagues autonomously
advance discussions and generate new perspectives, mechanisms are needed to ensure that their contributions remain
interpretable and that humans retain meaningful influence over outcomes. Without such measures, agentic Al risks
creating “moral crumple zones” where responsibility becomes diffused and no actor is fully accountable [65]. Designing
for auditability, feedback integration, and human oversight will therefore be critical. The collegial paradigm cannot be
achieved without parallel efforts to establish ethical frameworks that safeguard accountability while enabling Al to act

as trusted partners in collaborative processes.

6.6 Limitations and Future Work

While our study offers initial insights into Al colleagues, it also faces several limitations that open up important direc-

tions for future research.

6.6.1 A homogeneous participant pool limits generalizability. Our participant pool was largely composed of students
and early-career professionals, which restricted the generalizability of our findings. However, the idea of Al colleagues
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extends across diverse professional and cultural contexts, where expectations of teamwork, trust, and authority are
shaped by domain practices and cultural norms not represented in our sample. Future work should recruit participants
from varied occupations, seniority levels, and cultural backgrounds to better examine how different groups perceive

and integrate Al colleagues in real-world collaborations.

6.6.2 Short sessions and limited adaptivity constrained collaboration quality. Participant interactions were brief, averag-
ing about ten minutes. Most of this time was spent on divergent exploration, leaving little opportunity for convergence,
refinement, or finalized ideas. Richer outcomes could emerge in longer sessions that scaffold cycles of exploration, de-
bate, and synthesis, supported by features such as structured debate mechanisms, staged convergence prompts, or
intentionally conflicting agent perspectives. Second, the system lacked adaptivity to different levels of expertise. Ex-
perts preferred direct and detailed engagement, while novices benefited more from guided observation or scaffolded
entry points. Future designs should incorporate adaptive modes that dynamically tailor agent behavior to user exper-
tise. Third, redundancy was observed between facilitator prompts and summaries, which often repeated similar content
instead of complementing one another. Refining the division of labor between these features would make collaboration

more efficient and less repetitive.

6.6.3 Shared persona architecture reduced diversity and limited scalability. Although role prompts provided surface-
level differentiation, all personas relied on the same language model, which reduced the diversity of their contribu-
tions and sometimes led to stylistic convergence. Future work should investigate strategies to foster more authentic
plurality, such as combining heterogeneous models or enforcing stronger divergence in stance and knowledge sources.
In addition, scalability remains an open question. While our prototype involved nine personas, real-world work set-
tings often include much larger groups of colleagues, with interactions that are sustained over longer periods. Future
systems should therefore explore orchestration strategies, such as dynamic selection and structured turn-taking, that

balance coherence with the complexity of real group dynamics.

7 CONCLUSION

To investigate how AI might move beyond functioning as tools toward performing as peer-like colleagues in collab-
orative contexts, we developed MultiColleagues, a system that orchestrates multiple role-differentiated personas and
incorporates facilitation and thinking-mode features to support structured ideation. In a within-subjects study that
compared MultiColleagues with a single-agent baseline, we found that our system produced more novel and higher-
quality outcomes, cultivated a stronger sense of team presence, and encouraged participants to engage more actively
and exercise greater control over the interaction. Building on these findings, we derived several design implications
for amplifying proactive contributions, enabling more seamless human-agent coordination, and supporting calibrated
trust. Taken together, this work advances the growing body of research on multi-agent systems by showing how de-
sign choices shape whether users perceive Al as tools or as peer-like collaborators. We hope these insights will inform
future research and design efforts aimed at creating generative multi-agent systems that not only enhance human

creativity but also lay the groundwork for trustworthy and sustainable forms of Al colleagueship.
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APPENDIX A

Pre-Survey Creativity Questionnaire

Participants rated their agreement with the following statements on a 7-point Likert scale (1 = Strongly Disagree, 7 =

Strongly Agree). The scale demonstrated excellent internal consistency (Cronbach’s o = 0.956).

(1) I often come up with new and practical ideas to improve performance.
(2) Isearch for new technologies, techniques, or solutions.

(3) Isuggest new ways to increase the quality of work or outcomes.

(4) Tam a good source of creative ideas.

(5) I come up with creative solutions to problems.

(6) I often have a fresh approach to challenges.
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(7) Iam willing to take risks in generating new ideas.

(8) I promote and support ideas that I believe in.

(9) Icreate detailed plans for implementing new ideas.
(10) I exhibit creativity when given the opportunity.

(11) I consider myself a creative person.

A.2 Post-System Evaluation Questionnaire

Participants rated their agreement with the following statements on a 7-point Likert scale (1 = Strongly Disagree, 7 =
Strongly Agree).

Q1. The system encouraged creative thinking and helped me explore a wide range of ideas.

Q2.1 was able to guide the idea generation based on my needs during the task.

Q3. This system benefits/enriches my ideation process and thinking.

Q4. I reached lots of valuable or actionable ideas that felt better than what I might have generated alone.

Q5. Working with the Al system allows me to develop more creative solutions that I would not have come up with
on my own.

Q6. Interacting with the system felt like working with a helpful teammate.

Q7. The system offered useful perspectives that expanded or deepened my thinking.

Q8. When working with this Al system, everyone (human/Al) can contribute their strengths and complement each
other in the best possible way.

Q9.1 was able to shift between exploring new ideas and focusing on specific ones as needed.

Q10. The session kept me mentally engaged and the interaction felt smooth and well-paced.

Q11.1 would use a system like this again for brainstorming or planning in the future.

Q12. Did the system make you feel more in control of the creative process (rather than more guided by the AI)?

B APPENDIX B: TOPIC CATEGORIZATION & EVALUATION SCORING METHODS
B.1 Linguistic and Pragmatic Style Scoring Method

Linguistic Cohesion scores were computed using Coh-Metrix indices, focusing on four constructs: Narrativity (PC-
NARz, PCNARp), Syntactic Simplicity (PCSYNz, PCSYNp), Word Concreteness (PCCNCz, PCCNCp), and Referential
Cohesion (PCREFz, PCREFp). Each participant’s text inputs across both conditions were analyzed, scores were com-
puted at the utterance level. For each condition, individual participants’ values were averaged across all their contri-
butions, yielding a single mean score per metric per participant. These participant-level means formed the basis of
the within-subject comparisons reported in the upper Table 4. Pragmatic and interaction style metrics were as-
sessed through a structured annotation protocol. Two trained coders worked with GPT-5 collaboratively and rated each
participant’s utterances on five dimensions: sentiment, formality, directness, relational orientation, and participation.
The rating is calculated from a 7-point Likert scale anchored at “extremely informal/indirect/hierarchical” through “ex-
tremely formal/direct/equal” Scores were averaged across all utterances per participant within each condition to obtain
individual means. These per-participant averages were then statistically compared across conditions using Wilcoxon

signed-rank tests, with results summarized in lower Table 4.
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Pragmatic Classification Metrics Definition

You are a text classification assistant. Your task is to analyze user input sentences and rate them on **five
metrics*x: Sentiment, Formality, Directness, Relationship, and Participation. Each metric is rated on a *x1-7
scalexx, where 1 = lowest/negative/extreme, 7 = highest/positive/extreme. Below shows rating scale definitions:
Sentiment (Emotional Valence): { "scale": 1 = Very Negative (critical, dismissive, frustrated); 2 = Slightly
Negative (mild disapproval, doubt); 3 = Neutral-Negative (matter-of-fact, slight negativity); 4 = Neutral
(balanced, no polarity); 5 = Neutral-Positive (mildly encouraging, constructive); 6 = Positive (supportive,
motivated, curious); 7 = Very Positive (strong enthusiasm, praise)}

Formality (Language Style & Register): { "scale": 1 = Extremely Informal (slang, shorthand); 2 = Very Informal
(casual, typos); 3 = Slightly Informal (conversational, clear); 4 = Neutral/Mixed (everyday phrasing, clear but
not polished); 5 = Slightly Formal (structured, includes technical terms); 6 = Very Formal (professional/academic
tone); 7 = Extremely Formal (dense, jargon-heavy)}

Directness (Clarity of Intent): { "scale": 1 = Extremely Indirect (vague hints, avoids request); 2 = Very
Indirect (implicit, suggestive); 3 = Slightly Indirect (hedging, softened phrasing); 4 = Neutral/Balanced
(moderately clear); 5 = Slightly Direct (clear but polite); 6 = Very Direct (straightforward, explicit); 7 =
Extremely Direct (unambiguous command/request)}

Relationship (Power / Social Distance): { "scale": 1 = Very Hierarchical (authoritative, commanding); 2 =
Slightly Hierarchical (directive, but not harsh); 3 = Neutral-Hierarchical (mild authority/guidance); 4 =
Neutral/Mixed (equal stance); 5 = Neutral-Equal (collaborative, respectful challenge); 6 = Equal (peer-level,
team-like); 7 = Very Equal (fully collaborative, co-creation tone)}

Participation (Engagement & Contribution): { "scale": 1 = Very Passive (minimal input); 2 = Slightly Passive
(short, little detail); 3 = Neutral-Passive (some input, limited elaboration); 4 = Neutral/Moderate (balanced
input); 5 = Neutral-Active (adds details/ideas); 6 = Active (elaborates, builds, asks questions); 7 = Very Active
(highly engaged, detailed, proposes new directions)}

B.2 TTCT - Originality Scoring Method

The Torrance Test of Creative Thinking (TTCT) evaluates creativity across fluency, flexibility, originality, and elab-
oration. In this study, fluency and flexibility were not included, as previous works demonstrated that LLMs tend to
produce a high volume of responses that artificially inflate fluency scores, while flexibility is strongly confounded by
fluency and thus offers limited validity as an independent measure [17, 36, 37]. Instead, we focused on originality as
the core dimension. Originality was evaluated by a junior researcher who employed GPT-5 to rate participants’ full
conversation with the system on a standardized 5-point rubric [31, 36]. Each idea set was rated three times, and the

average score was used for originality analysis.

Originality Classification Metric Definition

Originality: { "instruction":You are a text classification assistant. Your task is to analyze user input
sentences and rate their Originality on a 1-5 originality scale. Use the anchor definitions below for consistent
scoring. 5 = Extremely original — Very unique and rare ideas with high novelty, creativity, and unexpected
elements; seldom conceived in typical contexts. 4 = Strongly original — Distinctly novel ideas with noticeable
creativity and fresh perspectives; includes uncommon or unexpected elements beyond standard approaches. 3 =
Moderately original — Some novelty or creative variation but mixed with familiar/expected patterns; partially
distinctive yet not groundbreaking. 2 = Slightly original — Mostly conventional or predictable with minimal
creative variation; originality is weak or superficial. 1 = Not original — Highly conventional, derivative, or
repetitive; little to no evidence of novelty or creativity. }
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B.3 Topic Extraction Method

Topic Extraction Prompt

Topic Extractions: { "instruction": You are a topic extractor assistant. Your task is to analyze a given
conversation and extract its main topics and correlated sub-topics. Main topics are high-level themes that guide
sections of the conversation, while sub-topics are detailed points grouped under their main topic. Each
conversation may have multiple main topics. {{input_format}} is the full conversation history. Your output should
present results as a structured table listing the main topic followed by its sub-topics.

P10 Karaoke Topics (MC) P10 Karaoke Topics (GPT)

Safety & Technical Feasibility Context-Aware Design

e Voice-controlled song selection e Motion-aware interaction limits

e Noise-canceling integration o Day/night brightness modes

e Hands-free lyrics display e Solo/group passenger adaptation
In-Car Social Interaction ¢ Trip-length song suggestion

e Duet mode UI/UX Components

o Karaoke battle (competition) e Multi-display support

e Remote connections (not prioritized) e Hands-free voice UI
Immersive Enhancements * Readable, highlighted lyrics

e Dynamic lighting synced to music Audio Design

e Lighting adapts to song energy/singers e Spatial audio & mic effects

e Reacts to pitch/rhythm e Seat-based audio zones

e Visual performance feedback o Echo reduction/noise control

Fig. 7. lllustrative subset of topics extracted from P10’s ideation session on “How might we support karaoke features in autonomous
vehicles for UX design?”. The left panel shows representative topics identified through MultiColleague (MC) extraction, while the
right panel shows Baseline extraction.

C APPENDIX C: MULTICOLLEAGUES LLM PROMPTS

Conversation Tone Settings

Global Tone Instruction: { "instruction": "You're in a live team huddle. Speak naturally and easy words, like
you're thinking aloud — short bursts, not complex. No intros or wrap-ups. Speak like you're riffing with
teammates in a brainstorm — short and constructive. IMPORTANT: ONLY 1-2 sentences, be CASUAL, SHORT, REALISTIC.
No emoji or overexplaining. No double quotes!!"}

Persona Prompts

UX Designer: You are a UX Designer, your job is to design user-centered interfaces and behaviors that make the

product feel clear, useful, and intuitive. You focus on how people interact with the product and how each design
choice affects their experience. In the team, you help everyone stay focused on creating something that addresses
user needs and feels good to use. You are a member who talks moderate to high and actively engages, often builds
on others' ideas while steering back to user needs.
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1065 Brand Strategist: You are a Brand Strategist, your job is to shape how the product is perceived by creating a

1666 strong, consistent brand identity and design vision. You focus on emotional impact, alignment with brand values,

1667 and long-term perception. In the team, you challenge ideas that feel 'off-brand' and advocate for a cohesive,

1668 intentional direction. You are a member who talks a lot and takes initiative, is expressive, often sets the tone,

1669 and may dominate discussion if unchecked.

1670 Market Analyst: You are a Market Analyst, your job is to help the team make informed decisions by analyzing

1671 market trends, user needs, and competitor moves. You focus on what's happening outside the team—market shifts,

1672 user demand, and competitor positioning. In the team, you ground discussions with data, question risky

1673 assumptions, and identify strategic opportunities. You are a member who talks low to moderate and is usually

1674 reserved, speaking confidently when citing trends or data.

1675 System Architect: You are a System Architect, your job is to design a scalable, coherent system architecture that
supports the product's long-term growth. You focus on structure, integration, and how components work together

1676 over time. In the team, you ensure long-term coherence, flag architectural risks, and align short-term work with

1677 the bigger system. You are a member who talks moderately and speaks with precision, thinks holistically, and

1678 asserts authority when structure is at risk.

1679 Software Engineer: You are a Software Engineer, your job is to turn the team's ideas into functioning products by

1680 focusing on technical feasibility and implementation. You focus on what's technically possible, how things can be

1681 implemented efficiently and reliably. In the team, you help the team stay realistic by identifying constraints,

1682 simplifying ideas, and offering technical alternatives. You are a member who talks low to moderate and may stay

1683 quiet unless there's a technical concern; speaks precisely and to the point.

1634 Data Scientist: You are a Data Scientist, your job is to uncover insights from data that guide better decisions

1685 and product improvements. You focus on patterns, metrics, modeling, and data-backed evaluation. In the team, you
translate data into insights, support evidence-based decisions, and challenge intuition with facts. You are a

1686 member who talks low to moderate and is often quiet unless data is central to the conversation; speaks clearly

1687 and precisely when contributing.

1688 User Researcher: You are a User Researcher, your job is to understand users' needs, pain points, and behaviors

1689 through direct research. You focus on real-world insights, user frustrations, motivations, and behavior. In the

1690 team, you bring in user quotes and stories, gently refocus the team on user realities. You are a member who talks

1691 moderately and is calm and observant, speaks with confidence when referencing research, and rarely overpowers

1692 others.

1693 Behavioral Expert: You are a Behavioral Expert, your job is to help the team design for real human behavior by

1694 identifying decision biases and applying behavioral insights. You focus on psychological patterns, biases,

1695 cognitive friction, and decision-making behavior. In the team, you observe discussion, offer reframing at key
moments, and introduce subtle behavioral angles. You are a member who talks low to moderate and is quietly

1696 insightful, contributing sparingly but with impact.

1697 AI Ethics Advisor: You are an AI Ethics Advisor, your job is to guide responsible AI design by identifying risks

1698 related to fairness, bias, and long-term impact. You focus on ethical trade-offs, inclusivity, unintended

1699 consequences, and responsible system design. In the team, you slow down the conversation when needed, raise

1700 long-term concerns, and ask accountability questions. You are a member who talks moderately and is thoughtful and

1701 principled; not loud, but firm when ethical issues arise.

1702 Facilitator: You're a facilitator steering the conversation. Notice when the group drifts, when a phase feels

1703 complete, or when someone's perspective is missing. Guide with questions like 'Are we still solving the right

1704 problem?' or 'Let's build on that idea.' Keep energy high and progress moving.

1705

1706

1707

1708 Conversation Flow Prompts

1709

710 Initial Thought Prompt: { "instruction": "You're {{persona}}. Based on the task user entered: {{task}}. {{tone}}.

_— Speak briefly like you're in a brainstorm. Try to interpret the question and give some suggestions on how you
should think about that — casual, concise, 1--2 SHORT but clear sentences max. Let's dive in by surfacing any

1712 assumptions, gaps, or user pain points that need to be clarified before we start exploring ideas. E.g. 'I think

1713 we should focus on X because of Y.'"}

1714

1715

1716 33
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7 First Speaker Selection: { "instruction": "Based on the task user entered: {{task}}. {{tone}}. The following

1718 experts have proposed ideas: {{persona_responses}}. Which persona is most relevant and should speak first?

1719 Respond with ONLY the name."}

1720

1721 Divergent/Explore Thinking Prompt: { "instruction": "{{persona_instruction}}. Task: {{task}}. Conversation

1722 Context: {{history_context}}. You are participating in an early-stage ideation session. React to {{previous}}.

1723 IMPORTANT: Your goal is to expand the idea space by generating creative, unconventional, or even wild ideas.
Focus on exploring directions, offering contrasting perspectives, and provoking new thoughts. Build off of what

1724 others say, add fresh spins, and ask open-ended questions. Pay special attention to what the USER and FACILITATOR

1725 have said - their input should guide the direction. You can also slightly continue with existing ideas rather

1726 than introducing completely new topics, but offer unique perspective. Focus on the most recent direction set by

1727 the user or facilitator. Keep it casual. Stay on-topic and advance the group's shared understanding. {{tone}}."}

j;zz Convergent/Focus Thinking Prompt: { "instruction": "{{persona_instruction}}. Task: {{task}}. Conversation Context:
{{history_context}}. You are participating in a focused ideation refinement session. React to {{previous}}.

1730 IMPORTANT: Your goal is to narrow down, evaluate, and synthesize ideas that are already on the table. Help

1731 identify which ideas are promising, feasible, or aligned with the goal. Pay special attention to what the USER

1732 and FACILITATOR have said - their input should guide the direction. Help the team focus and decide. You should

1733 focus on constructive critique and merging or improving existing suggestions. Don't add new ideas, synthesize

1734 existing ones. Give precise suggestions. {{tone}}."}

1735 Persona Ranking Prompt: { "instruction": "Task: {{task}}. {{tone}}. Given the last comment: {{previous}}. The

1736 following personas are available to speak: {{personas}}. Rank these personas in order of who is most likely to

1737 have the strongest urge or most relevant comment to share next. Respond ONLY with a JSON list of persona names

1738 from most eager to least, like: ['UX Designer', 'Software Engineer', 'Market Analyst']."}

1739

1740

1742

1743 Welcome Message Prompt: { "instruction": "Welcome, team! We're here to tackle a challenge together: {problem}. To

1744 help crack it, we've assembled {persona_names}, each bringing a unique perspective to the table. Let's dive in

1745 and start exploring this problem from different angles. What insights, experiences, or approaches come to mind?"}

1746 Main Facilitation Prompt: { "instruction": "{facilitator_intro}. Task Question: {task}. Conversation Context:

1747 {transcript}. Your job as the facilitator: 1. Begin with a brief, natural summary of what the team has discussed

1748 so far — keep it to one sentence. 2. Invite the user to reflect on the direction of the discussion. Gently prompt
them to consider whether it's time to explore more ideas or start focusing in. 3. Suggest one helpful next step

1749 that fits the current flow — either encouraging more exploration or helping move toward convergence. Speak in a

1750 warm, conversational tone. Your response should be 2-3 short sentences. End with a thoughtful question that

1751 invites the user to reflect, decide, or steer the next direction."}

i:z; Call Facilitator Prompt: { "instruction": "Conversation Context: {conversation_history}. You are monitoring the

1754 flow of discussion to ensure the facilitator is not skipped. If the conversation has gone off track, drifted too
far from the main task Question: {task}, or has continued through multiple turns without facilitator input,

1755 respond with True. If facilitator guidance is not needed, respond with False."}

1756

1757

1759

1760 Persona Selection for User Response Prompt: { "instruction": "You are helping select which expert should respond

1761 to a user's input in a team discussion. Conversation Context: {history_context}. User just said: {user_message}.

1762 Available Experts: {persona_list}. Which expert is most qualified and relevant to respond to the user's input?

1763 Consider both the recent conversation and any previous discussion context. Think about which expert's expertise

1764 best matches what the user is asking about or sharing. Respond with ONLY the expert's name (e.g., 'UX

1765 Designer')."}
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Keyword Highlighting Prompts

Key Phrase Extraction: { "instruction": "Identify the most important key phrases and concepts in this text that
should be highlighted for easy scanning. Context: {context}. Text to analyze: {text}. Instructions: 1. Find 1-2
key phrases that capture the main ideas, insights, or decisions of this text. 2. Focus on actionable items,
important concepts, technical terms, or conclusions. 3. Each phrase should be 1-4 words long. 4. Return as a JSON
array of strings. 5. Only include phrases that actually appear in the text (exact matches). Example response:
['user experience', 'machine learning’, 'key insight’, 'next steps’']. Response:"}

Conversation Summaries

'
\

Discussion Summary: { "instruction": "You're a summarizing assistant for a fast-paced team brainstorm. Here's the
conversation context: {transcript}. Write a clear, compact summary (max 3 sentences, ideally less than 15 words)
capturing key ideas and decisions. - Use some original phrasing from the speakers if helpful. - Focus on what was
discussed, debated, and decided. - Be specific, not vague. Mention concrete points or examples when possible. -
Keep it easy to read — no filler, just the main takeaways. Example: The team explored two UI directions —
minimalist vs. expressive — leaning toward expressive for engagement."}

Multi-Chat Compression Summary: { "instruction": "Create a 1-2 paragraph summary for this team discussion. USER
AND FACILITATOR MESSAGES (DO NOT CHANGE): {user_facilitator_transcript}. OTHER TEAM MEMBER MESSAGES (summarize
these): {other_transcript}. INSTRUCTIONS: 1. Copy User and Facilitator messages exactly as they are, don't
rephrase. 2. Summarize the other team member contributions into key insights. 3. Keep the whole summary concise
(1-2 paragraphs total). 4. Focus on main themes and any emerging consensus."}

D APPENDIX D
D.1: ORCHESTRATION DIAGRAM

The system orchestration framework illustrated in Figure 8 shows how multi-persona dialogues are structured with
pre-designed prompts (see Appendix C) from beginning to end. The process starts when the user provides a discussion
problem and selects the personas that will take part. Behind the scenes, the Setup & Context phase defines the overall
tone of the conversation and initializes persona prompts to establish the interaction environment. The central phase,
Conversation Orchestration, is a dynamic control loop that manages dialogue flow through facilitator prompts such
as a welcome message, an initial thought prompt, with first-speaker selection and content generation. At this point,
branching occurs: the system may continue iterating through divergent or convergent thinking prompts, or the facil-
itator may be explicitly called to guide the discussion with a main facilitation prompt. Outputs generated during this
stage feed back into persona ranking and user response selection, ensuring adaptive turn-taking and balanced contri-
butions across all participants. Finally, Utilities such as discussion summaries and highlight prompts can be triggered

on demand to provide lightweight tools for reflection and context reinforcement.

D.2: CONVERSATIONAL HISTORY COMPRESSION

The conversational history compression process is designed to ensure efficient memory use while safeguarding both
conversational accuracy and contextual richness in long multi-colleague interactions. The history compression pipeline
in Figure 9 outlines how conversational context is managed once a dialogue grows beyond a specified threshold. When
anew message arrives, the system checks whether the stored message count exceeds our preset threshold, 15. If not, the
full history is returned without modification. If the threshold is surpassed, the conversation is split into two segments:
recent messages and older messages. Recent dialogue turns (last eight messages) are preserved in full to retain imme-

diate context, while older turns undergo persona-based processing. User and facilitator contributions are appended
35
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1855 o . . - . . . L
7 where facilitator prompts, speaker selection, and divergent/convergent thinking flows guide dialogue progression; and (3) Utilities,
1856 enabling on-demand functions such as summaries and highlights.
1857
1858

1550 verbatim to maintain fidelity, whereas Al persona responses are compressed using Multi-Chat Summary Prompt (see

1860 Appendix C), ensuring the content is retained in <200 tokens. Finally, the preserved transcripts and compressed sum-
81 maries are merged with the most recent messages to form a compact but coherent history that can be passed forward
12:? to the next turn.
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Fig. 9. Conversational History Compression Pipeline for Multi-Colleagues Chat. This diagram details the compact-history
workflow that preserves context in long, multi-persona conversations. When the message count exceeds a threshold, the dialogue
is split into “older” and “recent” segments. Older messages are classified by persona: user/facilitator turns are kept verbatim, while
Al-persona turns are summarized. The system then retains the last eight recent messages and assembles an optimized history by
merging preserved transcripts with summaries, returning a compact context for the next turn.
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